Fragments of Martin's Axiom

and the existence of a non-special Aronszajn tree

Teruyuki Yorioka (Shizuoka University)

Winter School in Abstract Analysis 2015 section Set Theory and Topology

Hejnice, Czech Republic

February 2, 2015 9:00 - 9:20 **Definition** (Martin-Solovay). MA_{\aleph_1} : $\forall \mathbb{P} \ ccc$ $\forall \{D_{\alpha}; \alpha \in \omega_1\} \ dense \ subsets \ of \mathbb{P}$ $\exists G \subseteq \mathbb{P} \ filter \ s.t. \ D_{\alpha} \cap G \neq \emptyset \ for \ each \ \alpha \in \omega_1.$

Definition (Todorčević). $\mathcal{K}_{<\omega}$: every ccc forcing \mathbb{P} has precaliber \aleph_1 , i.e.

 $\forall I \in [\mathbb{P}]^{\aleph_1}$ $\exists I' \in [I]^{\aleph_1}$ such that any finite subset of I' has a common extension in \mathbb{P} .

For each $n \in \omega$, \mathcal{K}_n : every ccc forcing \mathbb{P} has property K_n , i.e.

 $\forall I \in [\mathbb{P}]^{\aleph_1}$ $\exists I' \in [I]^{\aleph_1} n$ -linked, i.e. any subset of I' of size n has a common extension in \mathbb{P} .

 C^2 : $\forall \mathbb{P} \ ccc \ \forall \mathbb{Q} \ ccc, \ \mathbb{P} \times \mathbb{Q} \ also \ ccc.$

Definition (Todorčević). A partition $K_0 \cup K_1 = [\omega_1]^{\langle \aleph_0}$ (or $[\omega_1]^n$) is ccc if $[\omega_1]^1 \subseteq K_0$ (or ignore it when $[\omega_1]^n$) and the forcing \mathbb{P}_{K_0}

 $\mathbb{P}_{K_0} := \text{ the set of finite } K_0 \text{-homogeneous subsets of } \omega_1, \quad \leq_{\mathbb{P}_{K_0}} := \supseteq,$ has the ccc.

$$\begin{array}{l} \mathcal{K}'_{<\omega} : \forall \ ccc \ partition \ [\omega_1]^{<\aleph_0} = K_0 \cup K_1 \\ \exists H \in [\omega_1]^{\aleph_1} \ such \ that \ [H]^{<\aleph_0} \subseteq K_0. \end{array}$$

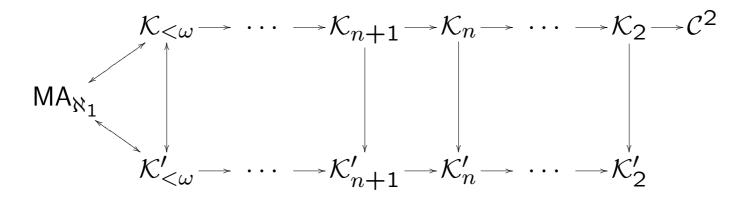
For each $n \in \omega$, \mathcal{K}'_n : \forall ccc partition $[\omega_1]^n = K_0 \cup K_1$ $\exists H \in [\omega_1]^{\aleph_1}$ such that $[H]^n \subseteq K_0$. Theorem (Todorčević).

 $C^2 \Rightarrow$ Suslin's Hypothesis, every (ω_1, ω_1) -gap is indestructible, $\mathfrak{b} > \aleph_1$.

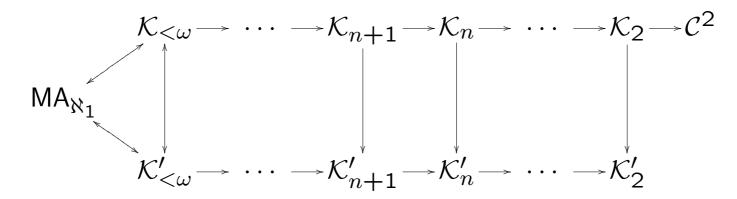
$$\mathcal{K}_2 \Rightarrow \mathcal{K}'_2 \Rightarrow every Aronszajn tree is special,every (ω_1, ω_1) -gap is indestructible,
 $\mathfrak{b} > \aleph_1$.$$

 $\mathcal{K}_3 \Rightarrow \mathcal{K}'_3 \Rightarrow (2^{\omega_1}, <_{\mathsf{lex}}) \text{ is embedded in } \omega^{\omega}/U \text{ for every nontrivial } U,$ add $(\mathcal{N}) > \aleph_1.$

 $\mathcal{K}_4 \Rightarrow \mathcal{K}'_4 \Rightarrow$ every ladder system on ω_1 can be uniformized, every uncountable set of reals is a Q-set. Theorem (Todorčević-Veličković).

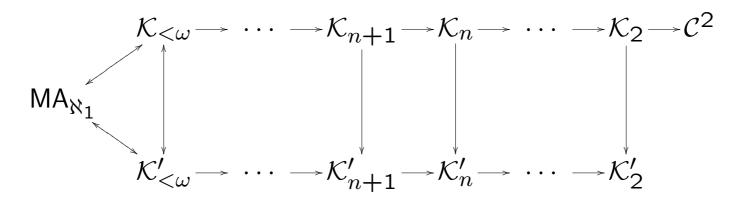


Theorem (Todorčević-Veličković).



Question (Todorčević). Are there other implications in the above diagram?

Theorem (Todorčević-Veličković).



Question (Todorčević). Are there other implications in the above diagram?

Question. For a subclass \mathcal{P} of ccc forcings, what about the diagram:

$$\mathcal{K}_{<\omega}(\mathcal{P}) \quad \cdots \quad \mathcal{K}_{n+1}(\mathcal{P}) \quad \mathcal{K}_n(\mathcal{P}) \quad \cdots \quad \mathcal{K}_2(\mathcal{P}) \quad \mathcal{C}^2(\mathcal{P})$$
$$\mathsf{MA}_{\aleph_1}(\mathcal{P})$$

$$\mathcal{K}'_{<\omega}(\mathcal{P}) \quad \cdots \quad \mathcal{K}'_{n+1}(\mathcal{P}) \quad \mathcal{K}'_{n}(\mathcal{P}) \quad \cdots \quad \mathcal{K}'_{2}(\mathcal{P})$$

Definition (Y.). A partition $[\omega_1]^2 = K_0 \cup K_1$ has the property \mathbb{R}_{1,\aleph_1} if for any large enough regular cardinal κ ,

 $\forall \text{ countable } N \prec H(\kappa) \text{ with } K_0 \in N$ $\forall I \in [\omega_1]^{\aleph_1} \cap N$ $\forall \alpha \in \omega_1 \setminus N$ $\exists I' \in [I]^{\aleph_1} \cap N \text{ such that } \forall \beta \in I', \{\alpha, \beta\} \in K_0.$

Note that a partition on $[\omega_1]^2$ is ccc whenever it satisfies the property R_{1,\aleph_1} .

Example. For an Aronszajn tree T, define

$$K_0 := \left\{ \{s, t\} \in [T]^2 : s \perp_T t \right\}, \quad K_1 := [T]^2 \setminus K_0.$$

Then the partition $[T]^2 = K_0 \cup K_1$ has the property R_{1,\aleph_1} .

Let countable $N \prec H(\aleph_2)$ with $T \in N$, $t \in T \setminus N$ and $I \in [T]^{\aleph_1} \cap N$. Find $s_0, s_1 \in T \cap N$ s.t. both $\{u \in I : s_0 <_T u\}$ and $\{u \in I : s_1 <_T u\}$ are uncountable. $\{u \in I : s_0 <_T u\}$ or $\{u \in I : s_1 <_T u\}$ works well. **Definition** (Y.). A partition $[\omega_1]^2 = K_0 \cup K_1$ has the property R_{1,\aleph_1} if for any large enough regular cardinal κ ,

```
\forall \text{ countable } N \prec H(\kappa) \text{ with } K_0 \in N
\forall I \in [\omega_1]^{\aleph_1} \cap N
\forall \alpha \in \omega_1 \setminus N
\exists I' \in [I]^{\aleph_1} \cap N \text{ such that } \forall \beta \in I', \{\alpha, \beta\} \in K_0.
```

```
Example. \mathcal{K}'_{2}(\mathbb{R}_{1,\aleph_{1}}) \Rightarrow Suslin's Hypothesis,
every (\omega_{1}, \omega_{1})-gap is indestructible,
\mathfrak{b} > \aleph_{1}.
```

The property R_{1,\aleph_1}

Definition (Y.). A forcing notion \mathbb{P} has the property R_{1,\aleph_1} if

- $\mathbb{P} \subseteq [\omega_1]^{\langle \aleph_0}$ uncountable and $\leq_{\mathbb{P}} = \supseteq$, and
- for any large enough regular cardinal κ ,

 $\forall \text{ countable } N \prec H(\kappa) \text{ with } \mathbb{P} \in N$ $\forall I \in [\mathbb{P}]^{\aleph_1} \cap N \text{ which forms a } \Delta\text{-system with root } \nu$ $\forall \sigma \in \mathbb{P} \setminus N \text{ with } \sigma \cap N = \nu$ $\exists I' \in [I]^{\aleph_1} \cap N \text{ such that } \forall \tau \in I', \sigma \not\perp_{\mathbb{P}} \tau.$

Example. • For any R_{1,\aleph_1} partition $[\omega_1] = K_0 \cup K_1$, the forcing \mathbb{P}_{K_0} $\mathbb{P}_{K_0} := \text{ the set of finite } K_0\text{-homogeneous subsets of } \omega_1, \quad \leq_{\mathbb{P}_{K_0}} := \supseteq,$ satisfies the property R_{1,\aleph_1} .

• $MA_{\aleph_1}(R_{1,\aleph_1}) \Rightarrow \mathcal{K}_{<\omega}(R_{1,\aleph_1})$ and every Aronszajn tree is special.

The property R_{1,\aleph_1}

Theorem (Shelah). It is consistent that there exists a non-special Aronszajn tree and Suslin's Hypothesis holds.

Theorem (Y.). It is consistent that there exists a non-special Aronszajn tree and $\mathcal{K}_{<\omega}(\mathsf{R}_{1,\aleph_1})$ holds.

Therefore $MA_{\aleph_1}(R_{1,\aleph_1})$ and $\mathcal{K}_{<\omega}(R_{1,\aleph_1})$ are different.

The property R_{1,\aleph_1}

Theorem (Shelah). It is consistent that there exists a non-special Aronszajn tree and Suslin's Hypothesis holds.

Theorem (Y.). It is consistent that there exists a non-special Aronszajn tree and $\mathcal{K}_{<\omega}(\mathsf{R}_{1,\aleph_1})$ holds.

Therefore $MA_{\aleph_1}(R_{1,\aleph_1})$ and $\mathcal{K}_{<\omega}(R_{1,\aleph_1})$ are different.

Remember:

Theorem (Todorčević-Veličković). $MA_{\aleph_1} \Leftrightarrow \mathcal{K}_{<\omega}$.

Todorčević orderings

Definition (Todorčević, Balcar-Pazák-Thümmel). For a topological space X, $\mathbb{T}(X)$ is the set of all subsets of X which are unions of finitely many convergent sequences including their limit points, and for each p and q in $\mathbb{T}(X)$, $q \leq_{\mathbb{T}(X)} p$ iff $q \supseteq p$ and $q^d \cap p = p^d$.

Theorem (Todorčević). • $\mathbb{T}(\mathbb{R})$ is a non- σ -linked ccc forcing.

• If $\mathfrak{b} = \aleph_1$, $\mathbb{T}(\mathbb{R})$ doesn't have property K.

Theorem (Balcar-Pazák-Thümmel). It is consistent that there exists a topological space X such that $\mathbb{T}(X)$ is not ccc.

Theorem (Thümmel). $\mathbb{T}(\left(\bigcup_{\alpha\in\omega_1}\alpha+1(\omega^*), <_{\mathsf{lex}}\right))$ satisfies the σ -finite cc, but doesn't satisfies the σ -bounded cc.

Todorčević orderings

Definition (Todorčević, Balcar-Pazák-Thümmel). For a topological space X, $\mathbb{T}(X)$ is the set of all subsets of X which are unions of finitely many convergent sequences including their limit points, and for each p and q in $\mathbb{T}(X)$, $q \leq_{\mathbb{T}(X)} p$ iff $q \supseteq p$ and $q^d \cap p = p^d$.

Theorem (Todorčević). • $\mathbb{T}(\mathbb{R})$ is a non- σ -linked ccc forcing.

• If $\mathfrak{b} = \aleph_1$, $\mathbb{T}(\mathbb{R})$ doesn't have property K.

Theorem (Balcar-Pazák-Thümmel). It is consistent that there exists a topological space X such that $\mathbb{T}(X)$ is not ccc.

Theorem (Thümmel). $\mathbb{T}(\left(\bigcup_{\alpha\in\omega_1}\alpha+1(\omega^*), <_{\mathsf{lex}}\right))$ satisfies the σ -finite cc, but doesn't satisfies the σ -bounded cc.

Theorem (Y.). It is consistent that there exists a non-special Aronszajn tree, $\mathcal{K}_{<\omega}(\mathsf{R}_{1,\aleph_1})$ holds and $\mathcal{K}_{<\omega}(\left\{\mathbb{T}(X); \text{ second countable } X\right)\right\})$ also holds.

Appendices

Theorem (Y.). For a topological space X, if $\mathbb{T}(X)$ satisfies the ccc, then $\mathbb{T}(X)$ adds no random reals.

They develop this.

Definition (Chodounský-Zapletal). A forcing \mathbb{P} satisfies Y-cc if

 $\forall countable \ M \prec H(\theta) \ with \ \mathbb{P} \in M$ $\forall q \in \mathbb{P}$ $\exists F \in M \ filter \ on \ ro(\mathbb{P}) \ such \ that \ \left\{ r \in ro(\mathbb{P}) \cap M; q \leq_{ro(\mathbb{P})} r \right\} \subseteq F.$

The followings are forcings which satisfies Y-cc:

- A σ -centered forcing satisfies Y-cc.
- For a partition $[X]^2 = K_0 \cup K_1$, define

 $\mathbb{P}_{K_0} := \text{ the set of finite } K_0 \text{-homogeneous subsets of } X, \quad \leq_{\mathbb{P}_{K_0}} := \supseteq,$ $\mathbb{Q}_{K_0} := [X]^{<\aleph_0}, \quad q \leq_{\mathbb{Q}_{K_0}} p : \iff q \supseteq p \text{ and } \forall x \in q \setminus p \,\forall y \in p\Big(\{x, y\} \in K_0\Big).$

If \mathbb{Q}_{K_0} satisfies the ccc, then both \mathbb{P}_{K_0} and \mathbb{Q}_{K_0} satisfy Y-cc.

• For a topological space X, if $\mathbb{T}(X)$ satisfies the ccc, then $\mathbb{T}(X)$ satisfies Y-cc.

Definition (Chodounský-Zapletal). A forcing \mathbb{P} satisfies Y-cc if

 $\forall countable \ M \prec H(\theta) \ with \ \mathbb{P} \in M$ $\forall q \in \mathbb{P}$ $\exists F \in M \ \text{filter on ro}(\mathbb{P}) \ \text{such that} \left\{ r \in \operatorname{ro}(\mathbb{P}) \cap M; q \leq_{\operatorname{ro}(\mathbb{P})} r \right\} \subseteq F.$

The followings are forcings with Y-cc:

- A σ -centered forcing satisfies Y-cc.
- For a partition $[X]^2 = K_0 \cup K_1$, define

 $\mathbb{P}_{K_0} := \text{ the set of finite } K_0 \text{-homogeneous subsets of } X, \quad \leq_{\mathbb{P}_{K_0}} := \supseteq,$ $\mathbb{Q}_{K_0} := [X]^{<\aleph_0}, \quad q \leq_{\mathbb{Q}_{K_0}} p : \iff q \supseteq p \text{ and } \forall x \in q \setminus p \forall y \in p\Big(\{x, y\} \in K_0\Big).$

If \mathbb{Q}_{K_0} satisfies the ccc, then both \mathbb{P}_{K_0} and \mathbb{Q}_{K_0} satisfy Y-cc.

• For a topological space X, if $\mathbb{T}(X)$ satisfies the ccc, then $\mathbb{T}(X)$ satisfies Y-cc. **Theorem** (Chodounský-Zapletal). A Y-cc forcing adds no random reals.

Proof. Let
$$\mathbb{P}$$
: Y-cc,
 \dot{x} : ro(\mathbb{P})-name for a real in ${}^{\omega}2$,
 $p \in \mathbb{P}$,
 $M \prec H(\theta)$: countable with $\{\mathbb{P}, \dot{x}, p\} \in M$,
 $\{U_n; n \in \omega\}$: open sets such that ${}^{\omega}2 \cap M \subseteq \bigcap_{n \in \omega} U_n$ measure zero.
Show that $p \Vdash_{\mathsf{ro}(\mathbb{P})}$ " $\dot{x} \in \bigcap_{n \in \omega} U_n$ ".

Proof. Let
$$\mathbb{P}$$
: Y-cc,
 \dot{x} : ro(\mathbb{P})-name for a real in ${}^{\omega}2$,
 $p \in \mathbb{P}$,
 $M \prec H(\theta)$: countable with $\{\mathbb{P}, \dot{x}, p\} \in M$,
 $\{U_n; n \in \omega\}$: open sets such that ${}^{\omega}2 \cap M \subseteq \bigcap_{n \in \omega} U_n$ measure zero.
Show that $p \Vdash_{\mathsf{ro}(\mathbb{P})}$ " $\dot{x} \in \bigcap_{n \in \omega} U_n$ ".

Assume not, then we can take $q \leq_{\mathbb{P}} p$ and $m \in \omega$ such that $q \Vdash_{\mathsf{ro}(\mathbb{P})} \text{``} \dot{x} \notin U_m \text{''}$.

 $n{\in}\omega$

Proof. Let
$$\mathbb{P}$$
: Y-cc,
 \dot{x} : ro(\mathbb{P})-name for a real in ${}^{\omega}2$,
 $p \in \mathbb{P}$,
 $M \prec H(\theta)$: countable with $\{\mathbb{P}, \dot{x}, p\} \in M$,
 $\{U_n; n \in \omega\}$: open sets such that ${}^{\omega}2 \cap M \subseteq \bigcap_{n \in \omega} U_n$ measure zero.
Show that $p \Vdash_{\mathsf{ro}(\mathbb{P})}$ " $\dot{x} \in \bigcap_{n \in \omega} U_n$ ".

Assume not, then we can take $q \leq_{\mathbb{P}} p$ and $m \in \omega$ such that $q \Vdash_{\mathsf{ro}(\mathbb{P})} \text{``} \dot{x} \notin U_m \text{''}$. By Y-cc of \mathbb{P} , there is a filter $F \in M$ on $\mathsf{ro}(\mathbb{P})$ with $\{r \in \mathsf{ro}(\mathbb{P}) \cap M : q \leq_{\mathsf{ro}(\mathbb{P})} r\} \subseteq F$.

Proof. Let
$$\mathbb{P}$$
: Y-cc,
 \dot{x} : ro(\mathbb{P})-name for a real in ${}^{\omega}2$,
 $p \in \mathbb{P}$,
 $M \prec H(\theta)$: countable with $\{\mathbb{P}, \dot{x}, p\} \in M$,
 $\{U_n; n \in \omega\}$: open sets such that ${}^{\omega}2 \cap M \subseteq \bigcap_{n \in \omega} U_n$ measure zero.
Show that $n \models \pi(\mathbb{P})$ " $\dot{x} \in \bigcap_{n \in \omega} U_n$ "

Show that $p \Vdash_{\mathsf{ro}(\mathbb{P})}$ " $\dot{x} \in \bigcap_{n \in \omega} U_n$ ".

Assume not, then we can take $q \leq_{\mathbb{P}} p$ and $m \in \omega$ such that $q \Vdash_{\mathsf{ro}(\mathbb{P})} \text{ "} \dot{x} \notin U_m \text{ "}$. By Y-cc of \mathbb{P} , there is a filter $F \in M$ on $\mathsf{ro}(\mathbb{P})$ with $\{r \in \mathsf{ro}(\mathbb{P}) \cap M : q \leq_{\mathsf{ro}(\mathbb{P})} r\} \subseteq F$. Define

$$S := \left\{ v \in 2^{<\omega}; \left[\dot{x} \upharpoonright |v| \neq v \right]_{\mathsf{ro}(\mathbb{P})} \notin F \right\}.$$

Proof. Let
$$\mathbb{P}$$
: Y-cc,
 \dot{x} : ro(\mathbb{P})-name for a real in ${}^{\omega}2$,
 $p \in \mathbb{P}$,
 $M \prec H(\theta)$: countable with $\{\mathbb{P}, \dot{x}, p\} \in M$,
 $\{U_n; n \in \omega\}$: open sets such that ${}^{\omega}2 \cap M \subseteq \bigcap_{n \in \omega} U_n$ measure zero.
Show that $n \Vdash \infty$ " $\dot{x} \in \bigcap U_n$ "

Show that $p \Vdash_{\mathsf{ro}(\mathbb{P})}$ " $\dot{x} \in \bigcap_{n \in \omega} U_n$ ".

Assume not, then we can take $q \leq_{\mathbb{P}} p$ and $m \in \omega$ such that $q \Vdash_{\mathsf{ro}(\mathbb{P})} \text{ "} \dot{x} \notin U_m \text{ "}$. By Y-cc of \mathbb{P} , there is a filter $F \in M$ on $\mathsf{ro}(\mathbb{P})$ with $\{r \in \mathsf{ro}(\mathbb{P}) \cap M : q \leq_{\mathsf{ro}(\mathbb{P})} r\} \subseteq F$. Define

$$S := \left\{ v \in 2^{<\omega}; \llbracket \dot{x} \upharpoonright | v | \neq v \rrbracket_{\mathsf{ro}(\mathbb{P})} \notin F \right\}.$$

Note that $S \in M$ and (S, \subseteq) forms a tree.

Proof. Let
$$\mathbb{P}$$
: Y-cc,
 \dot{x} : ro(\mathbb{P})-name for a real in ${}^{\omega}2$,
 $p \in \mathbb{P}$,
 $M \prec H(\theta)$: countable with $\{\mathbb{P}, \dot{x}, p\} \in M$,
 $\{U_n; n \in \omega\}$: open sets such that ${}^{\omega}2 \cap M \subseteq \bigcap_{n \in \omega} U_n$ measure zero.
Show that $n \Vdash \infty$ " $\dot{x} \in \bigcap U_n$ "

Show that $p \Vdash_{\mathsf{ro}(\mathbb{P})}$ " $\dot{x} \in \bigcap_{n \in \omega} U_n$ ".

Assume not, then we can take $q \leq_{\mathbb{P}} p$ and $m \in \omega$ such that $q \Vdash_{\mathsf{ro}(\mathbb{P})} \text{ "} \dot{x} \notin U_m \text{ "}$. By Y-cc of \mathbb{P} , there is a filter $F \in M$ on $\mathsf{ro}(\mathbb{P})$ with $\{r \in \mathsf{ro}(\mathbb{P}) \cap M : q \leq_{\mathsf{ro}(\mathbb{P})} r\} \subseteq F$. Define

$$S := \left\{ v \in 2^{<\omega}; \left[\dot{x} \upharpoonright |v| \neq v \right]_{\mathsf{ro}(\mathbb{P})} \notin F \right\}.$$

Note that $S \in M$ and (S, \subseteq) forms a tree. <u>Point</u> : <u>S</u> is infitite.

Proof. Let
$$\mathbb{P}$$
: Y-cc,
 \dot{x} : ro(\mathbb{P})-name for a real in ${}^{\omega}2$,
 $p \in \mathbb{P}$,
 $M \prec H(\theta)$: countable with $\{\mathbb{P}, \dot{x}, p\} \in M$,
 $\{U_n; n \in \omega\}$: open sets such that ${}^{\omega}2 \cap M \subseteq \bigcap_{n \in \omega} U_n$ measure zero.
Show that $n \Vdash \infty$ " $\dot{x} \in \bigcap U_n$ "

Show that $p \Vdash_{\mathsf{ro}(\mathbb{P})}$ " $\dot{x} \in \bigcap_{n \in \omega} U_n$ ".

Assume not, then we can take $q \leq_{\mathbb{P}} p$ and $m \in \omega$ such that $q \Vdash_{\mathsf{ro}(\mathbb{P})} \text{ "} \dot{x} \notin U_m \text{ "}$. By Y-cc of \mathbb{P} , there is a filter $F \in M$ on $\mathsf{ro}(\mathbb{P})$ with $\{r \in \mathsf{ro}(\mathbb{P}) \cap M : q \leq_{\mathsf{ro}(\mathbb{P})} r\} \subseteq F$. Define

$$S := \left\{ v \in 2^{<\omega}; \left[\dot{x} \upharpoonright |v| \neq v \right]_{\mathsf{ro}(\mathbb{P})} \notin F \right\}.$$

Note that $S \in M$ and (S, \subseteq) forms a tree. <u>Point</u> : <u>S</u> is infitite. Because, if S is finite, then there exists $k \in \omega$ such that $S \subseteq 2^{\leq k}$, but then

$$0 \neq \prod_{v \in k_2} \llbracket \dot{x} \upharpoonright k \neq v \rrbracket_{\mathsf{ro}(\mathbb{P})} \Vdash_{\mathsf{ro}(\mathbb{P})} `` \dot{x} \upharpoonright k \notin k^2 ",$$

which is a contradiction.

Proof. Let
$$\mathbb{P}$$
: Y-cc,
 \dot{x} : ro(\mathbb{P})-name for a real in ${}^{\omega}2$,
 $p \in \mathbb{P}$,
 $M \prec H(\theta)$: countable with $\{\mathbb{P}, \dot{x}, p\} \in M$,
 $\{U_n; n \in \omega\}$: open sets such that ${}^{\omega}2 \cap M \subseteq \bigcap_{n \in \omega} U_n$ measure zero.
Show that $n \models \infty$ " $\dot{x} \in \bigcap U_n$ "

Show that $p \Vdash_{\mathsf{ro}(\mathbb{P})}$ " $\dot{x} \in \bigcap_{n \in \omega} U_n$ ".

Assume not, then we can take $q \leq_{\mathbb{P}} p$ and $m \in \omega$ such that $q \Vdash_{\mathsf{ro}(\mathbb{P})} \text{ "} \dot{x} \notin U_m \text{ "}$. By Y-cc of \mathbb{P} , there is a filter $F \in M$ on $\mathsf{ro}(\mathbb{P})$ with $\{r \in \mathsf{ro}(\mathbb{P}) \cap M : q \leq_{\mathsf{ro}(\mathbb{P})} r\} \subseteq F$. Define

$$S := \left\{ v \in 2^{<\omega}; \left[\dot{x} \upharpoonright |v| \neq v \right]_{\mathsf{ro}(\mathbb{P})} \notin F \right\}.$$

Note that $S \in M$ and (S, \subseteq) forms a tree. <u>Point</u> : <u>S</u> is infitite. So we can take $u \in {}^{\omega}2 \cap M$ with $\forall k, u \upharpoonright k \in S$, and take $l \in \omega$ with $[u \upharpoonright l] \subseteq U_m$.

Proof. Let
$$\mathbb{P}$$
: Y-cc,
 \dot{x} : ro(\mathbb{P})-name for a real in ${}^{\omega}2$,
 $p \in \mathbb{P}$,
 $M \prec H(\theta)$: countable with $\{\mathbb{P}, \dot{x}, p\} \in M$,
 $\{U_n; n \in \omega\}$: open sets such that ${}^{\omega}2 \cap M \subseteq \bigcap_{n \in \omega} U_n$ measure zero.
Show that $n \Vdash \infty$ " $\dot{x} \in O$ U_n "

Show that $p \Vdash_{\mathsf{ro}(\mathbb{P})}$ " $\dot{x} \in \bigcap_{n \in \omega} U_n$ ".

Assume not, then we can take $q \leq_{\mathbb{P}} p$ and $m \in \omega$ such that $q \Vdash_{\mathsf{ro}(\mathbb{P})} \text{``} \dot{x} \notin U_m \text{''}$. By Y-cc of \mathbb{P} , there is a filter $F \in M$ on $\mathsf{ro}(\mathbb{P})$ with $\{r \in \mathsf{ro}(\mathbb{P}) \cap M : q \leq_{\mathsf{ro}(\mathbb{P})} r\} \subseteq F$. Define

$$S := \left\{ v \in 2^{<\omega}; \left[\dot{x} \upharpoonright |v| \neq v \right]_{\mathsf{ro}(\mathbb{P})} \notin F \right\}.$$

Note that $S \in M$ and (S, \subseteq) forms a tree. <u>Point</u> : <u>S</u> is infitite. So we can take $u \in {}^{\omega}2 \cap M$ with $\forall k, u \restriction k \in S$, and take $l \in \omega$ with $[u \restriction l] \subseteq U_m$. Then $q \cdot [\![\dot{x} \restriction l = u \restriction l]\!]_{\mathsf{ro}(\mathbb{P})} \neq 0$,

Proof. Let
$$\mathbb{P}$$
: Y-cc,
 \dot{x} : ro(\mathbb{P})-name for a real in ${}^{\omega}2$,
 $p \in \mathbb{P}$,
 $M \prec H(\theta)$: countable with $\{\mathbb{P}, \dot{x}, p\} \in M$,
 $\{U_n; n \in \omega\}$: open sets such that ${}^{\omega}2 \cap M \subseteq \bigcap_{n \in \omega} U_n$ measure zero.
Show that $n \Vdash \infty$ " $\dot{x} \in O$ U_n "

Show that $p \Vdash_{\mathsf{ro}(\mathbb{P})}$ " $\dot{x} \in \bigcap_{n \in \omega} U_n$ ".

Assume not, then we can take $q \leq_{\mathbb{P}} p$ and $m \in \omega$ such that $q \Vdash_{\mathsf{ro}(\mathbb{P})} \text{ "} \dot{x} \notin U_m \text{ "}$. By Y-cc of \mathbb{P} , there is a filter $F \in M$ on $\mathsf{ro}(\mathbb{P})$ with $\{r \in \mathsf{ro}(\mathbb{P}) \cap M : q \leq_{\mathsf{ro}(\mathbb{P})} r\} \subseteq F$. Define

$$S := \left\{ v \in 2^{<\omega}; \llbracket \dot{x} \upharpoonright |v| \neq v \rrbracket_{\mathsf{ro}(\mathbb{P})} \notin F \right\}.$$

Note that $S \in M$ and (S, \subseteq) forms a tree. <u>Point</u> : <u>S</u> is infitite. So we can take $u \in {}^{\omega}2 \cap M$ with $\forall k, u \restriction k \in S$, and take $l \in \omega$ with $[u \restriction l] \subseteq U_m$. Then $q \cdot [\![\dot{x} \restriction l = u \restriction l]\!]_{\mathsf{ro}(\mathbb{P})} \neq 0$, Because, if $q \cdot [\![\dot{x} \restriction l = u \restriction l]\!]_{\mathsf{ro}(\mathbb{P})} = 0$, then $q \cdot [\![\dot{x} \restriction l \neq u \restriction l]\!]_{\mathsf{ro}(\mathbb{P})} = q$ holds, i.e. $q \leq_{\mathsf{ro}(\mathbb{P})} [\![\dot{x} \restriction l \neq u \restriction l]\!]_{\mathsf{ro}(\mathbb{P})} \in \mathsf{ro}(\mathbb{P}) \cap M$, which is a contradiction.

Proof. Let
$$\mathbb{P}$$
: Y-cc,
 \dot{x} : ro(\mathbb{P})-name for a real in ${}^{\omega}2$,
 $p \in \mathbb{P}$,
 $M \prec H(\theta)$: countable with $\{\mathbb{P}, \dot{x}, p\} \in M$,
 $\{U_n; n \in \omega\}$: open sets such that ${}^{\omega}2 \cap M \subseteq \bigcap_{n \in \omega} U_n$ measure zero.
Show that $n \Vdash \infty$ " $\dot{x} \in \bigcap U_n$ "

Show that $p \Vdash_{\mathsf{ro}(\mathbb{P})}$ " $\dot{x} \in \bigcap_{n \in \omega} U_n$ ".

Assume not, then we can take $q \leq_{\mathbb{P}} p$ and $m \in \omega$ such that $q \Vdash_{\mathsf{ro}(\mathbb{P})} \text{ "} \dot{x} \notin U_m \text{ "}$. By Y-cc of \mathbb{P} , there is a filter $F \in M$ on $\mathsf{ro}(\mathbb{P})$ with $\{r \in \mathsf{ro}(\mathbb{P}) \cap M : q \leq_{\mathsf{ro}(\mathbb{P})} r\} \subseteq F$. Define

$$S := \left\{ v \in 2^{<\omega}; \left[\dot{x} \upharpoonright |v| \neq v \right]_{\mathsf{ro}(\mathbb{P})} \notin F \right\}.$$

Note that $S \in M$ and (S, \subseteq) forms a tree. <u>Point</u> : <u>S</u> is infitite. So we can take $u \in {}^{\omega}2 \cap M$ with $\forall k, u \restriction k \in S$, and take $l \in \omega$ with $[u \restriction l] \subseteq U_m$. Then $q \cdot [\![\dot{x} \restriction l = u \restriction l]\!]_{\mathsf{ro}(\mathbb{P})} \neq 0$, and hence

$$q \cdot \llbracket \dot{x} \upharpoonright l = u \upharpoonright l \rrbracket_{\mathsf{ro}(\mathbb{P})} \Vdash_{\mathsf{ro}(\mathbb{P})} `` \dot{x} \in [\dot{x} \upharpoonright l] = [u \upharpoonright l] \subseteq U_m ``,$$

which is a contradiction.

Definition (Larson–Todorčević). A partition $K_0 \cup K_1$ on $[\omega_1]^2$ has the rectangle refining property if

$$\forall I \in [\omega_1]^{\aleph_1} \ \forall J \in [\omega_1]^{\aleph_1} \\ \exists I' \in [I]^{\aleph_1} \ \exists J' \in [J]^{\aleph_1} \ such that \ \forall \alpha \in I' \ \forall \beta \in J', \ \{\alpha, \beta\} \in K_0.$$

Definition (Y.). A forcing notion \mathbb{P} has the rectangle refining property if

•
$$\mathbb{P} \subseteq [\omega_1]^{<\aleph_0}$$
 uncountable and $\leq_{\mathbb{P}} = \supseteq$, and

• $\forall I \in [\mathbb{P}]^{\aleph_1} \forall J \in [\mathbb{P}]^{\aleph_1}$, if $I \cup J$ forms a Δ -system, then $\exists I' \in [I]^{\aleph_1} \exists J' \in [J]^{\aleph_1}$ such that $\forall p \in I' \forall q \in J'$, $p \not\perp_{\mathbb{P}} q$.

Proposition.

$$\mathcal{K}'_{2}(\text{rec}) \Rightarrow Suslin's Hypothesis$$

every (ω_{1}, ω_{1}) -gap is indestructible,
 $\mathfrak{b} > \aleph_{1}$.

 $MA_{\aleph_1}(rec \cap FSCO_2) \Rightarrow every \ ladder \ system \ on \ \omega_1 \ can \ be \ uniformized.$

The rectangle refining property

Theorem (Y.). It is consistent that $MA_{\aleph_1}(rec)$ holds and there exists an entangled set of reals, hence both C^2 and \mathcal{K}'_2 fail.

Theorem (Y.). $\mathcal{K}'_2(\text{rec})$ is equivalent to $\mathcal{K}_2(\text{rec})$.

Theorem (Y.). It is consistent that $\mathcal{K}_{<\omega}(\text{rec} \cap \text{FSCO}_2)$ holds and $MA_{\aleph_1}(\text{rec} \cap \text{FSCO}_2)$ fails.

In particular, under $MA_{\aleph_1}(S)$, S forces $\mathcal{K}_{<\omega}(\text{rec} \cap FSCO_2)$.

Definition (Y.). FSCO₂ is the collection of forcings \mathbb{P} in FSCO₀ such that

- for any uncountable subset I of \mathbb{P} , there exists an uncountable subset I' of I such that for every finite subset ρ of I', if ρ has a common extension in \mathbb{P} , $\bigcup \rho$ is one of its common extensions, and
- for any uncountable subset $\{\sigma_{\alpha}; \alpha \in \omega_1\}$ of \mathbb{P} , there are an uncountable subset Γ of ω_1 and a sequence $\langle \sigma'_{\alpha}; \alpha \in \Gamma \rangle$ such that

- for each
$$\alpha \in \Gamma$$
, $\sigma'_{\alpha} \leq_{\mathbb{P}} \sigma_{\alpha}$ (i.e. $\sigma'_{\alpha} \supseteq \sigma_{\alpha}$),

- the set $\{\sigma'_{\alpha}; \alpha \in \omega_1\}$ forms a Δ -system, and
- for every finite subset ρ of Γ , if the set $\{\sigma'_{\alpha}; \alpha \in \rho\}$ has a common extension in \mathbb{P} , then $\bigcup_{\alpha \in \rho} \sigma'_{\alpha}$ is its common extension and the set

$$\left\{eta\in \mathsf{\Gamma};\left\{\sigma'_{lpha};lpha\in
ho
ight\}\cup\left\{\sigma'_{eta}
ight\}
ight.$$
 has a common extension in $\mathbb{P}
ight\}$

is uncountable.

Proposition. If $\mathbb{P} \in FSCO_0$ is ccc and closed under taking subsets, then $\mathbb{P} \in FSCO_2$.

Theorem (Roitman, 1979). \mathbb{B} forces the failure of C^2 .

Theorem (Todorčević, 1986). \mathbb{B} adds an entangled set of reals, hence \mathbb{B} forces the failure of \mathcal{K}'_2 .

So the forcing extension with \mathbb{B} is not interesting from a veiwpoint of Todorcevic's question. But many people studies it.

Theorem (Laver, 1987). Under MA_{\aleph_1} , \mathbb{B} forces every Aronszajn tree is special.

Theorem. Under MA_{\aleph_1} , \mathbb{B} forces the following statements:

(Roitman? Kunen) $MA_{\aleph_1}(\sigma\text{-linked})$,

(Hirschorm) every (ω_1, ω_1) -gap is indestructible,

(Moore) every ladder system coloring can be uniformized,

(Todorčević, Moore) some statements about topology, e.g. (S) and (L) hold in the class of cometrizable spaces.

Forcing with a non-separable measure algebra is quite different from forcing with a separable one.

For example, in the extension with a non-separable measure algebra,

(Moore) there exists a ladder system coloring which cannot be uniformized,

(Hirschorn) there exists a destructible gap.

Forcing extension with a separable measure algebra ${\mathbb B}$

Definition (Todorčević, Balcar–Pazák–Thümmel). For a topological space X, $\mathbb{T}(X)$ is the set of all subsets of X which are unions of finitely many convergent sequences including their limit points, and for each p and q in $\mathbb{T}(X)$, $q \leq_{\mathbb{T}(X)} p$ iff $q \supseteq p$ and $q^d \cap p = p^d$.

Theorem (Todorčević). • $\mathbb{T}(\mathbb{R})$ is a non- σ -linked ccc forcing.

• if $\mathfrak{b} = \aleph_1$, $\mathbb{T}(\mathbb{R})$ doesn't have property K.

Theorem (Balcar–Pazák–Thümmel). It is consistent that there exists a topological space X such that $\mathbb{T}(X)$ is not ccc.

Theorem (Thümmel). $\mathbb{T}(\left(\bigcup_{\alpha\in\omega_1}\alpha+1(\omega^*), <_{\mathsf{lex}}\right))$ satisfies the σ -finite cc, but doesn't satisfies the σ -bounded cc.

Forcing extension with a separable measure algebra ${\mathbb B}$

Definition (Todorčević, Balcar–Pazák–Thümmel). For a topological space X, $\mathbb{T}(X)$ is the set of all subsets of X which are unions of finitely many convergent sequences including their limit points, and for each p and q in $\mathbb{T}(X)$, $q \leq_{\mathbb{T}(X)} p$ iff $q \supseteq p$ and $q^d \cap p = p^d$.

Theorem (Todorčević). • $\mathbb{T}(\mathbb{R})$ is a non- σ -linked ccc forcing.

• if $\mathfrak{b} = \aleph_1$, $\mathbb{T}(\mathbb{R})$ doesn't have property K.

Theorem (Balcar–Pazák-Thümmel). It is consistent that there exists a topological space X such that $\mathbb{T}(X)$ is not ccc.

Theorem (Thümmel). $\mathbb{T}(\left(\bigcup_{\alpha\in\omega_1}\alpha+1(\omega^*), <_{\mathsf{lex}}\right))$ satisfies the σ -finite cc, but doesn't satisfies the σ -bounded cc.

Theorem (Y.). Under MA_{\aleph_1} , \mathbb{B} forces $MA_{\aleph_1}(\{\mathbb{T}(X); X \text{ second countable}\})$.

Forcing extension with a separable measure algebra ${\mathbb B}$

Theorem (Y.). Under
$$MA_{\aleph_1}$$
, \mathbb{B} forces $MA_{\aleph_1}(\left\{\mathbb{T}(X); X \text{ second countable}\right\})$.

Sketch of a proof. Let \dot{X} be a second countable space. For each $\varepsilon > 0$ ($\varepsilon < 1$), define

$$\mathbb{P}_{arepsilon} := \left\{ \langle b, \dot{p}
angle ; b \in \mathbb{B}, \ \mu(b) > arepsilon, \ \dot{p} ext{ is a } \mathbb{B} ext{-name for a member of } \mathbb{T}(\dot{X})
ight\},$$

$$\langle b, \dot{p} \rangle \leq_{\mathbb{P}_{\varepsilon}} \langle b', \dot{p}' \rangle : \iff b \leq_{\mathbb{B}} b' \text{ and } b \Vdash_{\mathbb{B}} \text{``} \dot{p} \leq_{\mathbb{T}(\dot{X})} \dot{p}' \text{''}.$$

It suffices to show that each \mathbb{P}_{ε} is ccc.

Points of the proof are

- randomize the proof of the cccness of $\mathbb{T}(X)$ for a second countable X, and
- use an idea of Abraham–Rubin–Shelah's club method.

Interesting approach to Todorcevic's question

Question (Todorčević). Under $MA_{\aleph_1}(S)$ (or PFA(S)), does S force C^2 ? \mathcal{K}'_2 ?

We note that a Suslin tree forces

- $\mathfrak{t} = \aleph_1$, so $MA_{\aleph_1}(\sigma$ -centered) fails,
- every ladder system has a coloring which cannot be uniformized, so \mathcal{K}'_4 fails,
- \mathcal{K}'_3 fails.

Question. Under $MA_{\aleph_1}(S)$ (or PFA(S)), does S forces that there are no entangled set of reals?

Or does a Suslin tree add an entangled set of reals?

Definition (Abraham–Rubin–Shelah). A set E of reals is called entangled if E is uncountable and

 $\forall n \in \omega \ \forall s \in {}^{n}\{0,1\} \ \forall F \subseteq [E]^{n}$ uncountable and pairwise disjoint $\exists x, y \in F$ with $x \neq y$ such that

$$\forall i < n \Big(x(i) < y(i) \iff s(i) = 0 \Big).$$

Suppose that $E = \{r_{\alpha}; \alpha \in \omega_1\}$ is an entangled set of reals, and define

$$\begin{split} L &:= \left\{ \left\langle r_{\alpha}, r_{\alpha+1} \right\rangle; \alpha \in \omega_{1} \text{ even} \right\}, \\ \mathbb{P}_{0} &:= \left\{ p \in [L]^{<\aleph_{0}}; p \text{ is a chain in } L \right\}, \leq_{\mathbb{P}_{0}} = \supseteq, \\ \mathbb{P}_{1} &:= \left\{ p \in [L]^{<\aleph_{0}}; p \text{ is an antichain in } L \right\}, \leq_{\mathbb{P}_{1}} = \supseteq. \end{split}$$

Then both \mathbb{P}_0 and \mathbb{P}_1 are ccc and $\mathbb{P}_0 \times \mathbb{P}_1$ has an uncountable antichain. \mathbb{P}_0 introduces a ccc partition which doesn't have uncountable 0-homogeneous sets. **Definition** (Y.). FSCO₂ is the collection of forcings \mathbb{P} in FSCO₀ such that

- for any uncountable subset I of \mathbb{P} , there exists an uncountable subset I' of I such that for every finite subset ρ of I', if ρ has a common extension in \mathbb{P} , $\bigcup \rho$ is one of its common extensions, and
- for any uncountable subset $\{\sigma_{\alpha}; \alpha \in \omega_1\}$ of \mathbb{P} , there are an uncountable subset Γ of ω_1 and a sequence $\langle \sigma'_{\alpha}; \alpha \in \Gamma \rangle$ such that

- for each
$$\alpha \in \Gamma$$
, $\sigma'_{\alpha} \leq_{\mathbb{P}} \sigma_{\alpha}$ (i.e. $\sigma'_{\alpha} \supseteq \sigma_{\alpha}$),

- the set $\{\sigma'_{\alpha}; \alpha \in \omega_1\}$ forms a Δ -system, and
- for every finite subset ρ of Γ , if the set $\{\sigma'_{\alpha}; \alpha \in \rho\}$ has a common extension in \mathbb{P} , then $\bigcup_{\alpha \in \rho} \sigma'_{\alpha}$ is its common extension and the set

$$\left\{eta\in \mathsf{\Gamma};\left\{\sigma'_lpha;lpha\in
ho
ight\}\cup\left\{\sigma'_eta
ight\}
ight.$$
 has a common extension in $\mathbb{P}
ight\}$

is uncountable.

Proposition. If $\mathbb{P} \in FSCO_0$ is ccc and closed under taking subsets, then $\mathbb{P} \in FSCO_2$.